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Abstract
Using first principles total energy calculations within the full potential linearized augmented
plane wave (FP-LAPW) method, we have investigated the structural, electronic, thermodynamic
and optical properties of Pb1−xCax S, Pb1−xCax Se and Pb1−x Cax Te ternary alloys. The effect of
composition on lattice parameter, bulk modulus, band gap, refractive index and dielectric
function was investigated. Deviations of the lattice constants from Vegard’s law and the bulk
modulus from linear concentration dependence were observed for the three alloys. Using the
approach of Zunger and co-workers, the microscopic origins of band gap bowing have been
detailed and explained. The disorder parameter (gap bowing) was found to be mainly caused by
the chemical charge transfer effect. On the other hand, the thermodynamic stability of these
alloys was investigated by calculating the excess enthalpy of mixing, �Hm, as well as the phase
diagram. It was shown that all of these alloys are stable at low temperature. The calculated
refractive indices and optical dielectric constants were found to vary nonlinearly with Ca
composition.

1. Introduction

Lead chalcogenide solid solution semiconductors are expected
to be applied to tunable laser diodes which operate in the
mid-infrared wavelength region around 3 μm. In this study,
band gap II–VI compounds are promising for wavelength
optoelectronic applications in laser diodes and in light emitting
diodes. They are considered to be mainly utilized in advanced
measurement systems for detecting hydrocarbon pollutants
in the air [1] and in a new optical fiber communication
system over super-long distances; which has not yet been
developed [2]. In order to use this laser diode, it is required

4 Author to whom any correspondence should be addressed.

to operate it close to room temperature. So far, many efforts
have been made to fabricate such laser diodes [3–6], but
this has not yet been realized. Semiconductor alloys, which
are solid solutions of two or more semiconducting elements,
have important technological applications, especially in the
manufacture of electronic and electro-optical devices [7].
One of the easiest ways to artificially change the electronic
and optical properties of semiconductors is by forming their
alloys. It is possible to combine two different compounds with
different optical band gaps and different rigidities in order to
obtain a new material with intermediate properties.

Several studies have been devoted to the lead chalco-
genides PbS, PbSe and PbTe and their structural, electronic
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and optical properties [8–10], but no experimental or theoret-
ical data have been reported yet on their alloys. The compo-
sitional variation in Pb1−xCax S, Pb1−x Cax Se and Pb1−x Cax Te
alloys induces significant changes in their physical properties,
such as electronic band structures and lattice parameters. The
possible development of heterostructures based on these new
material systems needs a detailed investigation of these alloys.
Hence, in order to exploit these materials fully for new optical
devices, the structural, electronic, thermodynamic and optical
properties of these alloys need to be investigated in more de-
tail. Motivated by the above considerations, we have carried
out a study of the alloys of interest using the full potential lin-
earized augmented plane wave (FP-LAPW) method. The al-
loys studied crystallize in the cubic phase over the whole range
of composition x (0 � x � 1). The physical origins of gap
bowing are investigated by following the approach of Zunger
and co-workers [11]. This model is capable of taking into ac-
count the dominant effects of both chemical and bond length
variations, unlike traditional methods like the VCA. In this ap-
proach, the alloy is studied in an ordered structure (we used a
cubic supercell of eight atoms) designed to reproduce the most
important pair correlation functions of a random (disorder) al-
loy and where the chemical and structural effects are captured
very well.

The optoelectronic properties of the semiconductors alloys
are essential for the design and fabrication of devices, the
refractive indices and the optical dielectric constants of the
materials have to be known as a function of composition.

The organization of this paper is as follows. We
describe the FP-LAPW computational details in section 2.
In section 3, results and discussion for structural, electronic,
thermodynamic and optical properties are presented. Finally
the conclusion is given in section 4.

2. Computational methods

The calculations were performed by the full potential
linearized augmented plane (FP-LAPW) method to solve
the Kohn–Sham equations as implemented in the WIEN2K
code [12]. The exchange–correlation contribution was
described within the generalized gradient approximation
(GGA) proposed by Perdew et al [13] to calculate the total
energy, while for the electronic properties, in addition to the
GGA correction, Engel–Vosko’s (EVGGA) formalism [14]
was also applied. The core states of Pb, Ca, S, Se and Te
atoms were treated self-consistently and fully relativistically
relaxed in a spherical approximation, while the valence
states were treated self-consistently within the semi-relativistic
approximation. Unfortunately, this approximation breaks
down for the heavy p-electron materials, such as Pb, and this
can affect the results, especially the gap energy for small x ,
so we have to use a scissors operator. The best solution
is also to apply a fully-relativistic treatment of the valence
bands, which is not available in this code. Wavefunctions,
charge density and potential were expanded inside muffin-tin
spheres of radius RMT by using spherical harmonics expansion,
while in the remaining space of the unit cell a plane wave
basis set was chosen. The plane wave cutoff of Kmax =

8.0/RMT (RMT is the smallest muffin-tin radius) was used for
the expansion of the wavefunction in the interstitial region
for all three alloys and the six binary compounds CaS, CaSe,
CaTe, PbS, PbSe and PbTe. The values of RMT were assumed
to be 1.9, 2.0, 2.1, 2.2 and 2.4 a.u. for Ca, S, Se, Pb
and Te atoms, respectively. The charge density was Fourier
expanded up to Gmax = 14 (Ryd)1/2. The maximal l value
for the wavefunction expansion inside the atomic spheres was
confined to lmax = 10. Meshes of 47 special k-points for binary
compounds and 125 special k-points for alloys were used in the
irreducible wedge of the Brillouin zone. Both the plane wave
cutoff and the number of k-points were varied to ensure total
energy convergence.

3. Results and discussion

3.1. Structural properties

In the present work we analyze the structural properties of the
binary compounds PbS, PbSe, PbTe, CaS, CaSe, CaTe and
their alloys. A rocksalt structure was assumed. The alloys were
modeled at some selected compositions with ordered structures
described in terms of periodically repeated supercells with
eight atoms per unit cell, for the compositions x = 0.25,
0.5, 0.75. For the considered structures, we perform the
structural optimization by minimizing the total energy with
respect to the cell parameters and also the atomic positions.
The calculated total energies at many different volumes
around equilibrium were fitted by the Murnaghan equation of
state [15] in order to obtain the equilibrium lattice constant
and the bulk modulus for the binary compounds and their
alloys. Our results for the materials of interest are compared
with the available experimental and theoretical predictions in
table 1. Considering the general trend that the GGA usually
overestimates the lattice parameters [20], our GGA results
for the binary compounds are in reasonable agreement with
experimental values and other calculated values. Usually, in
the treatment of alloy problems, it is assumed that the atoms are
located at ideal lattice sites and the lattice constants of alloys
should vary linearly with composition x according to Vegard’s
law [21]; however, violations of Vegard’s rule have been
reported in semiconductor alloys both experimentally [22] and
theoretically [23].

The calculated lattice parameters at different compositions
of Pb1−x CaxS, Pb1−x Cax Se and Pb1−xCax Te alloys exhibit a
tendency to Vegard’s law, with marginal upward bowing pa-
rameters equal to −0.016,−0.014 and −0.010 Å, respectively,
obtained by fitting the calculated values with a polynomial
function. This small deviation is due to the relaxation of Pb–S
and Ca–S bond lengths in Pb1−xCax S, Pb–Se and Ca–Se bond
lengths in Pb1−x CaxSe and Pb–Te and Ca–Te bond lengths in
Pb1−x CaxTe.

The composition dependence of the bulk modulus for
Pb1−x CaxS, Pb1−xCax Se and Pb1−x Cax Te alloys is compared
with the results predicted by linear concentration dependence
(LCD). A small deviation from LCD is observed, with
downward bowing equal to −0.54 GPa for the Pb1−x Cax S
alloy and upward bowing equal to 0.01 GPa for the
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Table 1. Calculated lattice parameter (a) and bulk modulus (B) of for Pb1−x Cax S, Pb1−x Cax Se and Pb1−x Cax Te ternary alloys at equilibrium
volume.

Lattice constants a (Å) Bulk modulus B (GPa)

x
This
work Experiment

Other
calculations

This
work Experiment

Other
calculations

Pb1−x Cax S 1 5.722 5.69 [16] 5.717 [17] 57.10 64 [16] 57.42 [17]
0.75 5.807 55.84
0.5 5.880 54.33
0.25 5.946 52.82
0 6.007 5.94 [19] 5.936 [18] 51.31

Pb1−x Cax Te 1 6.396 6.345 [16] 6.390 [17] 37.29 41.80 [16] 39.60 [17]
0.75 6.446 37.47
0.5 6.492 37.66
0.25 6.532 37.85
0 6.567 6.462 [19] 6.34 [18] 38.04

Pb1−x Cax Se 1 5.964 5.910 [16] 5.968 [17] 47.52 51 [16] 48.75 [17]
0.75 6.034 48.05
0.5 6.105 48.59
0.25 6.166 49.12
0 6.217 6.123 [19] 6.124 [18] 49.66

Pb1−x CaxSe alloy, while in the case of Pb1−x Cax Te our
calculations exhibit a good agreement with LCD, with a
bowing parameter close to zero. This deviation is mainly due
to the mismatch of the bulk modulus of binary compounds,
which is in our case very small. It is clearly seen that the
bulk modulus decreases on increasing the atomic number of
the chalcogen atom. Hence, we conclude that PbTe and CaTe
are more compressible compared the other calcium and lead
chalcogenide compounds, respectively.

3.2. Electronic properties

The self-consistent scalar relativistic indirect band gaps of
lead chalcogenide compounds and their alloys were calculated
within the GGA and EVGGA schemes. The results for each
compound are given in table 2. It is well known that the
GGA usually underestimates the experimental energy band
gap [24, 25]. This is mainly due to the fact that the functionals
within this approximation have simple forms that are not
sufficiently flexible to accurately reproduce both exchange–
correlation energy and its charge derivative. Engel and
Vosko by considering this underestimation constructed a new
functional form of GGA which was able to better reproduce
the exchange potential at the expense of less agreement as
regards exchange energy when compared to experiment. This
approach, which is called EVGGA, yields a better band
splitting and some other properties which mainly depend on the
accuracy of exchange–correlation potential. However, in this
method, the quantities that depend on an accurate description
of exchange energy Ex , such as equilibrium volumes and bulk
modulus, are in poor agreement with experiment.

The band gap EgABC of an alloy such as Ax B1−xCx is
not given by the linear concentration x weighted average of
the AC (EgAC) and BC (EgBC) gaps but has a quadratic form,
EgABC = x EgAC + (1− x)EgBC −bx(1− x), where b is known
as the bowing parameter. The band gap of alloys in various
device applications has provoked an interest in computing the
optical band gap bowing in terms of the constituent elements
AC and BC.

Table 2. Gap energy Eg of Pb1−x Cax S, Pb1−x Cax Se and
Pb1−x Cax Te ternary alloys at equilibrium volume.

Band gap Eg

This work

x GGA EVGGA

Pb1−x Cax S 1 2.405 3.176
0.75 1.195 1.883
0.5 0.764 1.441
0.25 0.458 1.216
0 0.486 1.221

Pb1−x Cax Se 1 2.105 2.815
0.75 1.162 1.598
0.5 0.739 1.312
0.25 0.440 1.092
0 0.423 1.079

Pb1−x Cax Te 1 1.582 2.228
0.75 1.310 1.575
0.5 1.073 1.484
0.25 0.871 1.389
0 0.819 1.331

In order to better understand the physical origins of the
gap bowing of alloys, we follow the procedure of Bernard and
Zunger [26] in which the bowing parameter b is decomposed
into three physically distinct contributions. By considering
the fact that the bowing dependence on the composition is
marginal, the authors limited their calculations to x = 0.5
(50%–50% alloy). The overall gap bowing coefficient at x =
0.5 measures the change in band gap according to the reaction:

AB(aAB) + AC(aAC) → AB0.5C0.5(aeq) (1)

where aAB and aAC are the equilibrium lattice constants of
the binary compounds AB and AC, respectively, and aeq is
the alloy equilibrium lattice constant. We now decompose
reaction (1) into three steps:

AB(aAB) + AC(aAC)
VD−→ AB(a) + AC(a), (2)
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AB(a) + AC(a)
CE−→ AB0.5C0.5(a), (3)

AB0.5C0.5(a)
SR−→ AB0.5C0.5(aeq). (4)

The first step measures the volume deformation (VD) effect
on the bowing. The corresponding contribution to the total
gap bowing parameter bVD represents the relative response of
the band structure of the binary compounds AB and AC to
hydrostatic pressure, which here arises from the change of
their individual equilibrium lattice constants to the alloy value
a = a(x) (from Vegard’s rule). The second contribution,
the charge exchange (CE) contribution bCE, reflects a charge
transfer effect which is due to the different (averaged) bonding
behavior at the lattice constant a. The final step measures
changes upon passing from the unrelaxed to the relaxed alloy
by bSR. Consequently, the total gap bowing parameter is
defined as

b = bVD + bCE + bSR, (5)

bVD = 2[εAB(aAB) − εAB(a) + εAC(aAC) − εAC(a)], (6)

bCE = 2[εAB(a) + εAC(a) − 2εABC(a)], (7)

bSR = 4[εABC(a) − εABC(aeq)], (8)

where ε is the energy gap that has been calculated for the
indicated atomic structures and lattice constants. All the
terms in equations (6)–(8) are calculated separately via self-
consistent band structure calculations within density functional
theory and the results are given in table 3. The total gap bowing
for all the three alloys were found to be mainly caused by the
charge transfer contribution bCE. It is due to the large electro-
negativity difference between atoms. Indeed, the significant
role of bCE is correlated with the ionicity factor difference
among constituent binary compounds PbS ( fi = 0.115), CaS
( fi = 0.430), PbTe ( fi = 0.022), CaTe ( fi = 0.260),
PbSe ( fi = 0.086) and CaSe ( fi = 0.380). These values
are calculated using the Pauling scale [27]. The volume
deformation term bVD contributes to the bowing parameter at
smaller magnitude. The weak contributions of bVD can be
correlated to the small mismatch of the lattice constants of
the corresponding binary compounds. The contribution of the
structural relaxation bSR is small in the three alloys. Finally, it
is clearly seen that our EVGGA values for bowing parameters
are larger than the corresponding values within GGA.

Alternatively, we calculated the total bowing parameter
by fitting the nonlinear variation of the calculated band gaps
versus concentration with quadratic functions. The results are
shown in figures 1(a)–(c) and obey the following variations:

Pb1−x CaxS ⇒
EGGA

g = 0.518 − 1.142x + 2.972x2

EEVGGA
g = 1.274 − 1.384x + 3.215x2 (9)

Pb1−x CaxSe ⇒
EGGA

g = 0.439 − 0.624x + 2.258x2

EEVGGA
g = 1.137 − 1.236x + 2.826x2 (10)

Pb1−x CaxTe ⇒
EGGA

g = 0.806 + 0.243x + 0.542x2

EEVGGA
g = 1.375 − 0.563x + 1.355x2.

(11)

We note that the calculated quadratic parameters (gap bowing)
within GGA and EVGGA are close to their corresponding
results obtained by Zunger approach.

Table 3. Decomposition of the optical bowing into volume
deformation (VD), charge exchange (CE), and structural relaxation
(SR) contributions compared with that obtained by a quadratic fit (all
values are in eV).

This work (Zunger) Quadratic equation

GGA EVGGA GGA EVGGA

Pb1−x Cax S bVD 0.240 0.286
bCE 2.577 2.851
bSR −0.093 −0.110
b 2.724 3.027 2.972 3.214

Pb1−x Cax Se bVD 0.141 0.194
bCE 2.046 2.427
bSR −0.089 −0.082
b 2.098 2.539 2.256 2.827

Pb1−x Cax Te bVD 0.057 0.070
bCE 0.535 1.205
bSR −0.084 −0.094
b 0.508 1.181 0.541 1.355

3.3. Thermodynamic properties

Focusing on the thermodynamic properties of Pb1−x Cax S,
Pb1−x CaxSe and Pb1−x Cax Te alloys, we calculated the phase
diagram based on the regular-solution model [28–30]. The
Gibbs free energy of mixing, �Gm for alloys is expressed as

�Gm = �Hm − T �Sm, (12)

where
�Hm = �x(1 − x) (13)

�Sm = −R[x ln x + (1 − x) ln(1 − x)] (14)

�Hm and �Sm being the enthalpy and the entropy of mixing,
respectively; � is the interaction parameter, R is the gas
constant and T is the absolute temperature. Only the
interaction parameter � depends on the material.

The mixing enthalpy of alloys can be obtained from the
calculated total energies as �Hm = EABx C1−x − x EAB −
(1 − x)EAC, where EABx C1−x , EAB and EAC are the respective
energies of ABx C1−x alloy and the binary compounds AB
and AC. We then calculated �Hm to obtain � as a function
of concentration. The interaction parameter increases almost
linearly with increasing x . From a linear fit we obtained

Pb1−x CaxS ⇒ �(kcal mol−1) = 0.5134x + 1.419 (15)

Pb1−xCax Se ⇒ �(kcal mol−1) = 0.568x + 1.022 (16)

Pb1−xCax Te ⇒ �(kcal mol−1) = 0.247x + 0.686. (17)

The average values of the x-dependent � in the range 0 � x �
1 obtained from these equations for Pb1−xCax S, Pb1−x CaxSe
and Pb1−xCax Te alloys are 1.676, 1.306 and 0.809 kcal mol−1,
respectively.

Now, we first calculate �Gm by using equations (12)–
(14). Then we use the Gibbs free energy at different
concentrations to calculate the T –x phase diagram which
shows the stable, metastable, and unstable mixing regions
of the alloy. At a temperature lower than the critical
temperature Tc the two binodal points are determined as
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Figure 1. Composition dependence of calculated band gap using
GGA (solid squares) and EVGGA (solid circles) for (a) Pb1−x Cax S,
(b) Pb1−x Cax Se, (c) Pb1−x Cax Te alloys.

(This figure is in colour only in the electronic version)

those points at which the common tangent line touches the
�Gm curves. The two spinodal points are determined as
those points at which the second derivative of �Gm is zero;
∂2(�Gm)/∂x2 = 0.

Figure 2. T –x phase diagram of (a) Pb1−x Cax S, (b) Pb1−x Cax Se,
(c) Pb1−x Cax Te alloys. Dashed line: binodal curve; solid line:
spinodal curve.

Figure 2 shows the calculated phase diagrams including
the spinodal and binodal curves of the alloys of interest. We
observed a critical temperature Tc of 425, 328 and 204 K for
Pb1−x CaxS, Pb1−xCax Se and Pb1−x CaxTe alloys, respectively.
We have calculated the phase diagram by using the linear
equations of the x-dependent �. Hence the phase diagram
looks asymmetric about x = 0.5 due to the asymmetry of
�Hm.

The spinodal curve in the phase diagram marks
the equilibrium solubility limit, i.e., the miscibility gap.
For temperatures and compositions above this curve a
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Table 4. Refractive indices of Pb1−x Cax S, Pb1−x Cax Se and Pb1−x Cax Te for different compositions x .

This work

FP-LAPW Relation (21) Relation (22) Relation (23) Experiment

Pb1−x Cax S 0 3.87 3.861 3.640 3.783 4.55 [34]
0.25 3.56 3.918 3.664 3.710
0.5 3.18 3.448 3.415 3.611
0.75 2.77 3.083 3.124 3.343
1 2.30 2.588 2.547 2.592 2.05 [35]

Pb1−x Cax Se 0 3.22 3.997 3.695 3.822 4.70 [34]
0.25 3.81 3.957 3.680 3.811
0.5 3.21 3.476 3.434 3.625
0.75 2.80 3.105 3.144 3.364
1 2.35 2.676 2.665 2.779 2.09 [35]

Pb1−x Cax Te 0 4.67 3.389 3.375 3.576 5.64 [34]
0.25 4.34 3.336 3.337 3.544
0.5 3.54 3.167 3.200 3.418
0.75 3.10 3.013 3.056 3.272
1 2.57 2.875 2.907 3.103 2.17 [35]

homogeneous alloy is predict. The wide range between
spinodal and binodal curves indicates that the alloy may exist
as a metastable phase. Finally, our results indicate that the
chalcogenide alloys are stable at low temperatures and show
a broad miscibility gap surrounded by the binodal line.

3.4. Optical properties

The optical properties of matter can be described by the
complex dielectric function ε(ω), which represents the linear
response of a system due to an external electromagnetic field
with a small wavevector. It can be expressed as

ε(ω) = ε1(ω) + iε2(ω), (18)

where ε1 and ε2 are the real and imaginary components of the
dielectric function, respectively. To calculate such parameters
the band gap is needed. It is well known that energy gaps
are systematically underestimated in ab initio calculations and
that this is an intrinsic feature of density functional theory,
hence to calculate the joint density of states we have to do an
energy shift by using a scissors operator which is the difference
between experimental results and our work. The imaginary
part of the dielectric function in the long wavelength limit has
been obtained directly from the electronic structure calculation,
using the joint density of states and the optical matrix elements.
The real part of the dielectric function can be derived from
the imaginary part by the Kramers–Kronig relationship. The
knowledge of both the real and imaginary parts of the dielectric
function allows the calculation of important optical functions.
The refractive index n(ω) is given by

n(ω) =
[
ε1(ω)

2
+

√
ε2

1(ω) + ε2
2(ω)

2

]1/2

. (19)

At low frequency (ω = 0), we get the following relation:

n(0) = ε1/2(0). (20)

The refractive index and optical dielectric constants are very
important in determining the optical and electric properties

of the crystal. Advanced applications of these alloys
can significantly benefit from accurate index data. The
use of fast non-destructive optical techniques for epitaxial
layer characterization (determination of thickness or alloy
composition) is limited by the accuracy with which refractive
indices can be related to alloy composition. These applications
require an analytical expression of known accuracy to
relate the wavelength dependence of refractive index to
alloy composition, as determined from simple techniques as
photoluminescence. A few empirical relations [31–33] relate
the refractive index to the energy band gap for a large set
of semiconductors. However, in these relations the refractive
index n is independent of the temperature and the incident-
photon energy. The following models are used:

(i) The Moss formula [31] based on an atomic model

Egn4 = k, (21)

where Eg is the energy band gap and k a constant.
The value of k is given to be 108 eV by Ravindra and
Srivastava [31].

(ii) The expression proposed by Ravindra et al [32]

n = α + β Eg (22)

with α = 4.084; and β = −0.62 eV−1.
(iii) Herve and Vandamme’s empirical relation [33] is given by

n =
√

1 +
(

A

Eg + B

)2

(23)

with A = 13.6 eV and B = 3.4 eV.

Table 4 lists the values of the refractive index for the alloys
under investigation for some compositions, x , obtained from
FP-LAPW calculations and the different models. Comparison
with the experimental data has been made where possible.
One can note that the values obtained for the refractive
index of binary compounds within the FP-LAPW method

6



J. Phys.: Condens. Matter 21 (2009) 195401 C Sifi et al

are in better agreement with available experimental results
in comparison with the values calculated by the empirical
relations. Unfortunately, no comparison has been made for the
refractive index of the alloys of interest in the 0 < x < 1
composition range, as there are no known available data to the
best of our knowledge.

Using the expressions (20)–(23), the variation of the
refractive index for the three alloys of interest as a function
of the Ca concentration x has been studied. Our results are
plotted in figures 3(a)–(c), and one can notice that the refractive
index decreases with increasing Ca content. Accordingly, a
nonlinear behavior of refractive index can be clearly noticed,
which arises from the effect of compositional disorder. The
calculated refractive indices versus concentration were fitted
by a polynomial equation. The results are summarized as
follows:

Pb1−x Cax S ⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n1(x) = 3.913 − 0.211x − 1.142x2

(from relation (21)),

n2(x) = 3.645 + 0.331x − 1.422x2

(from relation (22)),

n3(x) = 3.739 + 0.643x − 1.743x2

(from relation (23)),

n4(x) = 3.872 − 1.172x − 0.400x2

(FP-LAPW).

(24)

Pb1−x CaxSe ⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n1(x) = 4.045 − 0.634x − 0.763x2

(from relation (21)),

n2(x) = 3.704 + 0.072x − 1.111x2

(from relation (22)),

n3(x) = 3.812 + 0.384x − 1.398x2

(from relation (23)),

n4(x) = 3.3582 − 1.06x − 2.16x2

(FP-LAPW).

(25)

Pb1−x Cax Te ⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n1(x) = 3.404 − 0.363x − 0.177x2

(from relation (21)),

n2(x) = 3.386 − 0.225x − 0.262x2

(from relation (22)),

n3(x) = 3.584 − 0.151x − 0.336x2

(from relation (23)),

n4(x) = 4.726 − 2.130x − 0.046x2

(FP-LAPW).

(26)
For Pb1−xCax S and Pb1−xCax Te alloys, a weak upward

bowing is observed for n4(x), compared with the other ones,
while for Pb1−x Cax Se alloy, it has a contrary behavior to both
others. For this alloy a significant upward bowing is observed
for n4(x). From these equations, we can note the strong
nonlinear dependence of the refractive index of the alloys with
concentration x . Interestingly, we note that on going from lead
chalcogenides (PbS, PbSe and PbTe) to calcium chalcogenides

Figure 3. Refractive index for (a) Pb1−x Cax S, (b) Pb1−x Cax Se and
(c) Pb1−x Cax Te alloys for different composition x .

(CaS, CaSe and CaTe), the band gap of the three alloys
decreases (see figure 1), whereas the refractive index increases.
The ternary alloys show that the smaller band gap material has
a large value of the refractive index as is the general behavior
of many other groups III–V semiconductors alloys [36]. The
optical dielectric constant bas been directly deduced from the
relation (20). Qualitatively, the compositional dependence of
the dielectric function of the alloys has the same trend as that
of the refractive index. This is expected since our results
are related to the refractive index discussed previously in the
present work. It also seems that the FP-LAPW method leads
to the obtention of values for ε that are closer to experiment
than the other used models. Least-squares fit were made on
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our data:

Pb1−x Cax S ⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε1(x) = 15.347 − 2.710x − 6.195x2

(from relation (21))

ε2(x) = 13.349 + 1.164x − 8.0.48x2

(from relation (22))

ε3(x) = 14.076 + 3.128x − 10.238x2

(from relation (23))

ε4(x) = 15.031 − 9.706x − 0.042x2

(FP-LAPW)

(27)

Pb1−x CaxSe ⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε1(x) = 16.377 − 5.813x − 3.645x2

(from relation (21))

ε2(x) = 13.760 − 0.418x − 6.285x2

(from relation (22))

ε3(x) = 14.591 + 1.736x − 8.5268x2

(from relation (23))

ε4(x) = 11.384 + 6.230x − 12.776x2

(FP- LAPW)

(28)

Pb1−xCax Te ⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε1(x) = 11.585 − 2.522x − 0.8735x2

(from relation (21))

ε2(x) = 11.464 − 1.614x − 1.456x2

(from relation (22))

ε3(x) = 12.849 − 1.213x − 2.054x2

(from relation (23))

ε4(x) = 22.278 − 19.644x + 3.790x2

(FP- LAPW)

(29)
where ε1(x), ε2(x), ε3(x) and ε4(x) stand for the optical di-
electric constants estimated from the corresponding refractive
indices n1(x), n2(x), n3(x) and n4(x), respectively, for a given
value of x .

4. Conclusion

In summary, we have applied the FP-LAPW method in order
to study the structural, electronic, thermodynamic and optical
properties of Pb1−xCax S, Pb1−x Cax Se and Pb1−x Cax Te ternary
alloys. We have investigated the composition dependence
of the lattice constant, bulk modulus, band gap, refractive
index and dielectric function. The calculated lattice parameters
for the three alloys exhibit a tendency to Vegard’s law with
a marginal bowing parameter. A small deviation of bulk
modulus from LCD has been observed for all the three
alloys. The physical origin of this effect should be mainly
due to the weak mismatch of the bulk modulus of the binary
compounds. The band structure was calculated by GGA. In
addition, the EVGGA scheme has been used to obtain more
accuracy. The bowing is found to be mainly caused by the
charge-transfer effects, while the volume deformation and the
structural relaxation contribute to the bowing parameter with

a smaller magnitude. The investigation of the thermodynamic
stability allowed us to calculate the critical temperatures for
Pb1−x CaxS, Pb1−x Cax Se and Pb1−xCax Te alloys, which are
425, 328 and 204 K, respectively.

Using the FP-LAPW method and empirical relations,
the refractive index and the dielectric constant have been
calculated as a function of composition x . The refractive index
exhibits a nonlinearity, however, showing different bowing
parameters, which arise from the effects of compositional alloy
disorder. The same trend is observed for the dielectric constant.
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